5.

Mean $=\frac{25+28+28+35+20+34+22+30+32+36}{10}$
$=\frac{290}{10}$
$=29$

The sum of the distances is
$9+7+4+1+1+1+3+5+6+7=44$. The
mean absolute deviation is $\frac{44}{10}=4.4$. The data values differ from the mean by an average of $\$ 4.40$.
6. Note: See solution of Exercise 1 .

Mean $=\frac{61+61+61+61+61+61+61+61}{8}$
$=\frac{488}{8}$

$$
=61
$$

The sum of the distances is 0 . The mean absolute deviation is 0 . The heights are the same, so absolute deviation is 0 .
7. Mean $=\frac{101.5+98.7+95.4+92.3+109.8+104.7}{6}$
$=\frac{602.4}{6}$

$$
=100.4
$$

The sum of the distances is
$8.1+5+1.7+1.1+4.3+9.4=29.6$. The mean
absolute deviation is $\frac{29.6}{6} \approx 4.9$. The data values differ
from the mean by an average of approximately 4.9
thousand people, or 4900 people.
8. Mean $=\frac{103+171+115+165+124+170+125}{7}$

$$
=\frac{973}{7}
$$

$$
=139
$$

The sum of the distances is
$36+24+15+14+26+31+32=178$. The mean absolute deviation is $\frac{178}{7} \approx 25.4$. The data values differ from the mean by an average of approximately 25.4 , or about 25 visitors.
9. There are 6 data values in the set, so the MAD should be divided by 6 instead of 5 . List all the distances when calculating the MAD, even if a value is zero.
$\mathrm{MAD}=\frac{3+2+0+6+4+3}{6}=3$
So, the values differ from the mean by an average of 3 .

